AG602-89 InGaP HBT Gain Block

Product Features

- DC 3500 MHz
- +18.5 dBm P1dB at 900 MHz
- +33 dBm OIP3 at 900 MHz
- 14 dB Gain at 900 MHz
- Single Voltage Supply
- Internally matched to 50 $\boldsymbol{\Omega}$
- Lead-free/Green/RoHScompliant SOT-89 Package
- MTTF > 1000 years

Applications

- Mobile Infrastructure
- CATV / DBS
- W-LAN / ISM
- RFID
- Defense / Homeland Security

Specifications (1)

Fixed Wireless

Parameter Min Typ Max Operational Bandwidth MHz DC 3500 900 Test Frequency MHz dB 14.2 Gain Input Return Loss dB 13 dB Output Return Loss 15 Output IP3⁽²⁾ dBm +33.1Output IP2 dBm +47Output P1dB dBm +18.7Noise Figure dB 4.4 Test Frequency MHz 1900 Gain dB 12.6 13.6 14.6 Output IP3⁽²⁾ dBm +33.0Output P1dB dBm +18.4Device Voltage V 5.16 Device Current 75 mA

Test conditions: 25° C, Supply Voltage = +6 V, R_{bias} = 11.2 Ω, 50 Ω System.
 30IP measured with two tones at an output power of +2 dBm/tone separated by 10 MHz. The

3OIP measured with two tones at an output power of +2 dBm/tone separated by 10 MHz. The suppression on the largest IM3 product is used to calculate the 3OIP using a 2:1 rule.

Absolute Maximum Rating

Parameter	Rating
Operating Case Temperature	-40 to +85 °C
Storage Temperature	-55 to +150 °C
DC Voltage	+7 V
RF Input Power (continuous)	+10 dBm
Junction Temperature	+250° C

Operation of this device above any of these parameters may cause permanent damage.

Product Information

Product Description

The AG602-89 is a general-purpose buffer amplifier that

offers high dynamic range in a low-cost surface-mount

package. At 900 MHz, the AG602-89 typically provides 14

dB of gain, +33 dBm Output IP3, and +18.5 dBm P1dB. The device combines dependable performance with superb

quality to maintain MTTF values exceeding 1000 years at

mounting temperatures of +85°C and is available in the

environmentally-friendly lead-free/green/RoHS-compliant

The AG602-89 consists of Darlington pair amplifiers using

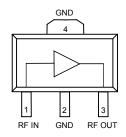
the high reliability InGaP/GaAs HBT process technology and only requires DC-blocking capacitors, a bias resistor,

The broadband MMIC amplifier can be directly applied to

various current and next generation wireless technologies

such as GPRS, GSM, CDMA, and W-CDMA. In addition, the AG602-89 will work for other various applications

within the DC to 3.5 GHz frequency range such as CATV


and an inductive RF choke for operation.

SOT-89 package.

and fixed wireless.

Functional Diagram

Function	Pin No.
Input	1
Output/Bias	3
Ground	2, 4

Typical Performance⁽¹⁾

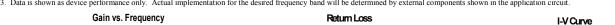
Parameter	Units		Тур	ical	
Frequency	MHz	500	900	1900	2140
S21	dB	14.4	14.2	13.6	13.5
S11	dB	-12	-13	-16	-16
S22	dB	-16	-15	-14	-14
Output P1dB	dBm	+18.6	+18.7	+18.4	+18.3
Output IP3 ⁽²⁾	dBm	+33.5	+33.1	+33.0	+33.0
Noise Figure	dB	4.3	4.4	4.5	4.5

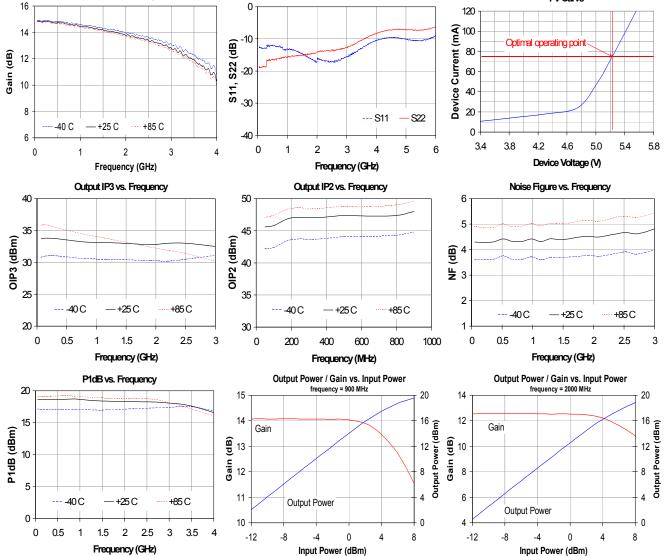
Ordering Information

Part No.	Description
AG602-89*	InGaP HBT Gain Block (lead-tin SOT-89 Pkg)
AG602-89G	InGaP HBT Gain Block (lead-free/green/RoHS-compliant SOT-89 Pkg)
AG602-89PCB	700 – 2400 MHz Fully Assembled Eval. Board
* This package is being ph	ased out in favor of the green nackage type which is backwards compatible for

This package is being phased out in favor of the green package type which is backwards compatible f existing designs. Refer to Product Change Notification WJPCN06MAY05TC1 on the WJ website.

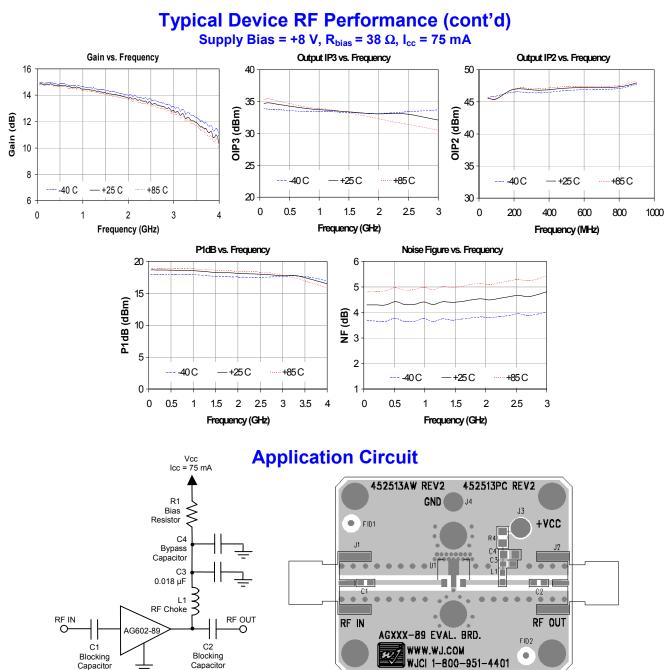
Specifications and information are subject to change without notice




Typical Device RF Performance Supply Bias = +6 V, R_{bias} = 11.2 Ω , I_{cc} = 75 mA

Frequency	MHz	100	500	900	1900	2140	2400	3500	5800
S21	dB	14.5	14.4	14.2	13.6	13.5	13.2	12.2	9.6
S11	dB	-12	-12	-13	-16	-16	-17	-13	-10
S22	dB	-18	-16	-15	-14	-14	-13	-10	-7
Output P1dB	dBm	+18.6	+18.6	+18.7	+18.4	+18.3	+18.3	+17.5	
Output IP3	dBm	+33.8	+33.5	+33.1	+33.0	+33.0	+33.0		
Noise Figure	dB	4.3	4.3	4.4	4.5	4.5	4.6		

Test conditions: T = 25° C, Supply Voltage = +6 V, Device Voltage = 5.16 V, Rbias = 11.2 Ω, Icc = 75 mA typical, 50 Ω System. 1.


2. 30IP measured with two tones at an output power of ± 2 dBm/tone separated by 10 MHz. The suppression on the largest IM3 product is used to calculate the 30IP using a 2:1 rule 3. Data is shown as device performance only. Actual implementation for the desired frequency band will be determined by external components shown in the application circuit.

Recommended Component Values

Reference			Frequ	ency (MH	(z)		
Designator	50	500	900	1900	2200	2500	3500
L1	820 nH	220 nH	68 nH	27 nH	22 nH	18 nH	15 nH
C1, C2, C4	.018 µF	1000 pF	100 pF	68 pF	68 pF	56 pF	39 pF

Capacito

1. The proper values for the components are dependent upon the intended frequency of operation. 2. The following values are contained on the evaluation board to achieve optimal broadband performance:

Ref. Desig.	Value / Type	Size
L1	39 nH wirewound inductor	0603
C1, C2	56 pF chip capacitor	0603
C3	0.018 µF chip capacitor	0603
C4	Do Not Place	
R1	10.0Ω 1% tolerance	0805

Recommended Bias Resistor Values

S upply Voltage	R1 value	Size
6 V	11.2 ohms	0805
7 V	24.5 ohms	1210
8 V	38 ohms	1210
9 V	51 ohms	2010
10 V	65 ohms	2010
12 V	91 ohms	2512

The proper value for R1 is dependent upon the supply voltage and allows for bias stability over temperature. WJ recommends a minimum supply bias of +6 V. A 1% tolerance resistor is recommended.

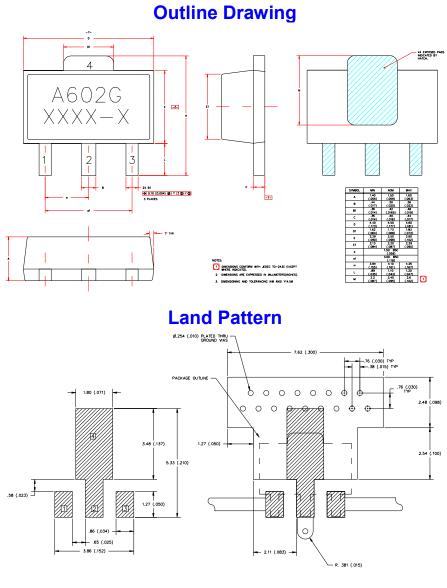
Specifications and information are subject to change without notice

AG602-89 InGaP HBT Gain Block

Product Information Typical Device Data

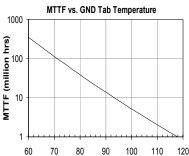
eq (MHz)	S11 (dB)	S11 (ang)	S21 (dB)	S21 (ang)	S12 (dB)	S12 (ang)	S22 (dB)	S22 (ang)
50	-12.45	-179.91	14.65	177.68	-18.47	0.30	-18.85	-178.44
200	-12.91	171.24	14.62	170.92	-18.99	-3.64	-18.64	-177.87
400	-12.46	164.32	14.52	162.05	-18.93	-5.25	-16.26	-178.54
600	-12.28	157.86	14.47	153.13	-18.97	-10.06	-16.32	-178.83
800	-12.63	150.21	14.42	144.73	-19.02	-14.09	-16.00	-177.02
1000	-13.15	140.39	14.28	136.05	-19.19	-19.66	-15.76	-176.74
1200	-13.43	134.71	14.19	127.32	-18.85	-21.14	-15.38	-175.75
1400	-14.26	126.80	14.09	118.98	-18.79	-24.68	-15.22	-175.00
1600	-15.05	119.54	13.92	110.49	-18.90	-26.05	-14.76	-174.56
1800	-16.38	110.26	13.78	102.19	-18.80	-29.49	-14.71	-176.10
2000	-17.11	96.84	13.66	93.65	-18.68	-33.27	-14.28	-177.69
2200	-16.65	71.82	13.49	85.45	-18.81	-37.73	-13.79	-166.68
2400	-16.89	63.89	13.33	77.28	-18.70	-40.60	-13.55	-175.45
2600	-16.89	59.42	13.21	71.65	-18.95	-46.91	-13.53	176.71
2800	-16.59	53.95	13.05	63.53	-18.42	-48.00	-13.22	164.78
3000	-15.52	52.50	12.84	54.89	-18.59	-51.43	-12.58	151.61
3200	-14.61	51.60	12.62	46.88	-18.59	-54.39	-11.96	137.23
3400	-13.45	49.24	12.39	38.41	-18.66	-58.42	-10.90	123.95
3600	-12.28	47.08	12.09	30.10	-18.81	-63.86	-9.86	111.38
3800	-11.24	46.44	11.82	22.22	-18.63	-68.41	-9.03	100.88
4000	-10.56	43.88	11.51	14.12	-18.75	-72.12	-8.31	91.70
4200	-9.92	41.48	11.21	6.39	-18.59	-77.07	-7.74	83.45
4400	-9.69	39.97	10.96	-1.28	-18.78	-80.46	-7.20	76.70
4600	-9.63	37.32	10.76	-9.18	-18.68	-83.65	-7.02	69.68
4800	-9.82	33.70	10.57	-16.93	-18.61	-88.22	-7.05	63.58
5000	-9.99	28.26	10.44	-25.10	-18.54	-92.28	-7.07	56.77
5200	-10.43	22.43	10.33	-33.40	-18.20	-99.91	-7.18	49.22
5400	-10.50	14.69	10.14	-41.74	-18.20	-104.63	-7.35	41.07
5600	-10.30	6.48	9.94	-50.80	-18.01	-110.93	-7.16	32.02
5800	-9.92	-3.39	9.72	-60.03	-17.88	-117.29	-6.85	21.76
6000	-8.96	-13.41	9.41	-69.50	-18.15	-123.08	-6.18	10.75

Device S-parameters are available for download off of the website at: http://www.wj.com



AG602-89 (SOT-89 Package) Mechanical Information This package may contain lead-bearing materials. The plating material on the leads is SnI **Outline Drawing** Prod SYMBOL MIN МАХ The AG Α 4 (.055) (.063) D "AG602 lot в (.017) (.022) code and mark flow the B1 AG602 of the с -Z-D XXXX - X(.181) (.173) D1 (.064 2.60 Ε for this part are (.102) E1 $\left(\cdot \right)$ "Application the (.079) (.090) otes -2X B1 e1 -Tн ī. м SD Rating (.159) ⊕ 0.10 (0.004)
 ⊕ T Z
 S Y
 S ition! ESD sensitive device. NOTES DIMENSIONS CONFOR WHERE INDICATED. WITH JEDEC Class 0 DIMENSIONS ARE EXPRESSED IN MILLIME 2. Passes at 150 V DIMENSIONING AND TOLERANC Human Body Model (HBM) andard: JEDEC Standard JESD22-A114 - Y-ESD Rating: Class II Passes at 250 V Value: Charged Device Model (CDM) Test: Land Patter JEDEC Standard JESD22-C101 Standard: Ø.254 (.010) PLATED THR GROUND VIA MSL Rating: Level 3 at +235° C convection reflow Standard: JEDEC Standard J-STD-020 1.80 (.071) **Mounting Config. Notes** 1. Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010"). 2.54 Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance. Mounting screws can be added near the part to fasten the board 3. to a heatsink. Ensure that the ground / thermal via region contacts the heatsink. 4. Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink 5. RF trace width depends upon the PC board material and 0 86 (.034 C construction. 65 (.025) 6. Use 1 oz. Copper minimum. All dimensions are in millimeters (inches). Angles are in 381 (.015) degrees Thermá MTTF vs. GND Tab Temperature 1000 hrs) Operat +85°C u 100 C/W The 45° C June MTTF 10 renced from the hottest ermal is En to the sold tab (pin 4). Adds to the thical biasing condition of nA at 55°C case temperature. A 1 60 70 80 90 100 110 120 million hours is achieved for Tab Temperature (°C) elow 177 °C.

AG602-89G (Green / Lead-free SOT-89 Package) Mechanical Information


This package is lead-free/Green/RoHS-compliant. It is compatible with both lead-free (maximum 260°C reflow temperature) and leaded (maximum 245°C reflow temperature) soldering processes. The plating material on the leads is NiPdAu.

Thermal Specifications

Parameter	Rating
Operating Case Temperature	-40 to +85°C
Thermal Resistance, Rth ⁽¹⁾	154° C/W
Junction Temperature, Tjc ⁽²⁾	145° C

- 1. The thermal resistance is referenced from the hottest part of the junction to the ground tab (pin 4).
- This corresponds to the typical biasing condition of +5.16V, 75 mA at an 85°C case temperature. A minimum MTTF of 1 million hours is achieved for junction temperatures below 177 °C.

Tab Temperature (°C)

Product Marking

The AG602-89G will be marked with an "A602G" designator. An alphanumeric lot code ("XXXX-X") is also marked below the part designator on the top surface of the package.

Tape and reel specifications for this part are located on the website in the "Application Notes" section.

MSL / ESD Rating

Caution! ESD sensitive device.

ESD Rating:	Class 1C
Value:	Passes at 1000 V min.
Test:	Human Body Model (HBM)
Standard:	JEDEC Standard JESD22-A114

ESD Rating:	Class IV
Value:	Passes at 1000 V min.
Test:	Charged Device Model (CDM)
Standard:	JEDEC Standard JESD22-C101

MSL Rating: Level 3 at +260° C convection reflow Standard: JEDEC Standard J-STD-020

Mounting Config. Notes

- Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010").
- Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
 Mounting screws can be added near the part to fasten the board
- Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
 RF trace width depends upon the PC board material and
- RF trace width depends upon the PC board mate construction.
- Use 1 oz. Copper minimum.
 All dimensions are in millimeters (inches). Angles are in degrees.